
The Foshay Group 1

You Can’t Train That!

Or, how do you make an expert?

Rob Foshay, Ph.D.1

Think of who your MVP is: the person who can provide innovative, valuable solutions to
your customers (whether internal or external) – not just products. The person you call
when everyone else is stumped and can’t fix what’s wrong. The person who can get the
job done in a fraction of the time most others need.

Do you really understand how your MVP’s work their miracles? Probably not. Your
MVP’s have expertise, acquired over years of experience, perhaps with the aid of a
mentor. What your experts know probably isn’t written down anywhere: it goes well
beyond what’s in the policy and procedure manuals, and well beyond what’s in your
training (for which your best experts probably have a casual disregard). If you (or a new
recruit) asks them how they do it, the experts probably can’t explain it. You can watch
them work, but you can’t get inside their heads. If you ask them how to teach someone
else, they’ll tell you the history of how they learned everything they know – but that’s not
what you asked. For all these reasons, in most organizations, the knowledge the most
valuable players have at every level is tacit. It takes years to build that level of expertise,
so the experts are scarce. You (and your experts) may believe that what they know can’t
be taught, it can only be learned over years of experience, as they did.

If you believe expertise can’t be taught, in a sense you’re correct. Conventional methods
of training can’t do it, and conventional instructional design doesn’t deal well with
expertise. But thanks to recent research in the learning sciences, we now have a much
better understanding of the kinds of knowledge which underlie expertise, and there have
been major advances in our understanding of how to teach it. The research has shown
that what experts are good at is ill-structured problem solving (problems with many ways
to get to the answer, and often with many “right” solutions as well as some clearly
“wrong”ones). The knowledge they have is of three types: how it works (the ability to
predict and explain the behavior of the system they manipulate), decision-making rules
(also called cognitive strategies), and context knowledge (knowledge of the system and its
environment).2 Experts’ knowledge is so fully integrated that they literally can no longer
take it apart or explain it. That’s why an expert can usually tell you the solution, or look
at a novice’s work and say, “that’s not how I would do it”—but that’s as far as it goes.
Furthermore, experts are very efficient: they gather less information than novices do, and
they act based on experience and insights about the system and the context that wouldn’t
even make sense to novices. So in a real sense, simply taking apart what an expert does
and explaining each step to a novice won’t work, either.

1 The Foshay Group
www.foshay.org
rfoshay@world.oberlin.edu
2 For more on these types of knowledge, see The Foshay Group’s paper, “What is Expertise?”

The Foshay Group 2

Researchers have developed a family of analytical techniques, collectively called
cognitive task analysis, for systematically “unpacking” all three types of expert
knowledge. The output of the analysis is a map of the expert’s knowledge. Once the
map exists, then it’s possible to combine a range of training strategies to teach it, in a way
that novices can understand.

Teaching how things work and context knowledge can be done using specific types and
combinations of explanation, example, practice and feedback. These instructional
strategies can be implemented through a wide range of e-Learning and classroom
teaching techniques. Decision rules, on the other hand, must be taught using specially
constructed case problems, preferably with learners working in groups of 4 or less, and
talking to each other in a specially structured dialog. Additional case problems are
needed for “worked examples” to model the process, and for use in assessing and
certifying problem-solving proficiency. It is possible to implement these specially-
constructed case problems in classrooms, in webcasts with audio conferencing and/or
instant messaging, in online threaded chat environments typically available in learning
management systems (which don’t require everyone to be online at once), and even in
self-instructional online environments. After this training comes an “apprenticeship”
period where new trainees return to their work environments and tackle real problems
with real customers, but with careful management of problem complexity and with
availability of mentoring. If needed, the training + apprenticeship cycle may repeat over
a period of months until the trainees have the experience (and confidence) to deal with
the most demanding problems, and they can be certified as expert.

But does this new type of training really work? Research in a wide range of industries
points to major gains in efficiency, often reducing the time needed to “grow” an expert
from many years to a few months (one research review concluded that 5 years of
experience could be compressed to 50 hours of training3).

Example #1: Management training
A large organization needed to update its management training to 10,000 managers at all
levels, in a compliance topic. The old course required 2 days. By applying the methods
of cognitive task analysis, the course was shortened to 1 day, with equal or better
effectiveness. For the first 500 trainees, training required 590 person- days instead of
1,087 with the old course, resulting in a net savings of 2.5 person-years.4

3 Means, B. & Gott, S. (1988) Cognitive task analysis as a basis for tutor development: Articulating abstract
knowledge representations. In Psotka, L.D., Massey, L.D. & Mutter, S.A., Intelligent Tutoring Systems:
Lessons Learned. Hillsdale, NJ: Lawrence Erlbaum.
4 Clark, R.E., and Estes, F. (1996) Cognitive Task Analysis for Training. International Journal of
Educational Researcj. 25 (5) 403-417.

The Foshay Group 3

Example #2: Installing and troubleshooting complex software
systems

A major software company was preparing to introduce a new software system. Field
engineers, who were all certified network engineers, needed to be trained in how to install
and troubleshoot the new product. A conventional training analysis revealed a daunting
problem: each installation of the system used a custom configuration, and there were
over 350 error messages the technicians had to handle; troubleshooting each problem
depended on the exact configuration of the system, so it was both overwhelming and
impossible to develop troubleshooting procedures and train the technicians in them
within an acceptable time (one calculation of conventional training time was 6 months of
classroom time!)

Through cognitive task analysis, a way was found to dramatically reduce the training
time required. The training solution was to:

� First, teach how a prototype example system worked, emphasizing the inputs,
processes and outputs of each of the 11 modules in the system, regardless of
configuration.

� Then, teach the decision rules used to configure the modules into large systems
across multiple servers.

� Then, teach the few decision rules for troubleshooting the system which were
“new” to the trainees.

At each stage, the field technicians started with direct instruction including explanation,
example, and practice with feedback. Then they moved to case problems which required
them to invent their own procedures for configuring and troubleshooting, by applying the
decision rules to the specific context of the customer’s system.

The bottom line: training that could be done in a few hours, rather than months. As a side
benefit, new releases of the system were expected to require little or no retraining: simply
a field bulletin notifying the field of what had changed about the decision rules governing
the configuration or behavior of the system.

