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Three previous papers (Foshay 1995; Foshay 1997; Foshay and Kirkley 1998) examined 
the current cognitive research on problem solving, and asked what instructional strategies 
based on that work might be used to improve the then-standard (behaviorally based) 
recommendations for teaching of problem solving.  In the past decade, there has been 
continued progress in the understanding of what problem-solving skills are for novices 
and experts.  There has been some advancement in our understanding of how problem-
solving is learned, and in how to teach certain kinds of problem-solving skills.  The focus 
of inquiry has shifted somewhat, from descriptive analysis of high-level problem solving 
to the use of problems in instruction.  But there are still many unanswered questions 
about instructional strategies and their corresponding design techniques.  For background, 
we will first provide a brief sample of some current descriptive thinking on problem 
solving.  Then, we will reframe the inquiry around problems in teaching.  Finally, we will 
comment on current lines of investigation surrounding design of instructional problems.  
We will conclude with a discussion of key questions which, in our view, are critical to 
advance our understanding of problem solving instruction and measurement. 

What is Problem Solving?  A Sample of Current Views 
Anderson (Anderson 1980) defines problem solving as “any goal-directed sequence of 
cognitive operations.”  Jonassen’s recent review (Jonassen 2000) quotes this definition, 
and adds a number of elaborations.  Many of his points are important for our discussion, 
and will be reviewed in this section. 

For much of the 20th century, educators have devoted their attention to trying to define 
and teach problem solving skills.  In the early 1900s, problem solving was viewed as a 
mechanical, systematic, and often abstract (decontextualized) set of skills, such as those 
used to solve riddles or mathematical equations.  These problems often have correct 
answers that are based on logical solutions with a single correct answer (convergent 
reasoning).  This view persisted through the 1970’s work on general problem solving, 
and was an influence on the “inquiry-oriented” curricula of the time, such as “new math” 
and “new science,” as well as commercial training courses on problem solving.  
Curriculum objectives and courses on general problem solving persist in some schools, 
post-secondary institutions, and industrial training programs. 
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Cognitive research done in the last 20 years has led to a different model of problem 
solving.  Today we view problem solving as a complex set of cognitive, behavioral, and 
attitudinal components.  In 1983, Mayer defined problem solving as a multiple step 
process where the problem solver must find relationships between past experiences 
(schema) and the problem at hand and then act upon a solution.  Mayer suggested three 
characteristics of problem solving: 

1. Problem solving is cognitive but is inferred from behavior. 

2. Problem solving results in behavior that leads to a solution. 

3. Problem solving is a process that involves manipulation of or operations on 
previous knowledge (Funkhouser and Dennis 1992). 

Bruning, Shraw and Ronning (1999) survey current problem solving models, and observe 
that they generally include these activities: 

1. Identifying the problem. 

2. Representing the problem. 

3. Selecting an appropriate strategy. 

4. Implementing the strategy. 

5. Evaluating solutions. 

Of course, many problems are too complex to be solved with a single iteration of this 
process.  In these cases, the learner breaks the problem down into intermediate goals and 
solves each one in turn, using this process.  This switching between smaller, intermediate 
goals and a larger, final goal is an example of a higher order thinking skill called a 
cognitive strategy.  Gagne’s (1985) definition of problem solving reflects this principle, 
and positions problem solving as one kind of higher order thinking skills.  He defined 
problem solving as the “synthesis of other rules and concepts into higher order rules 
which can be applied to a constrained situation.”  Scandura (1977) treats cognitive 
strategies as higher-order rules within his Structural Learning Theory. 

Note that there is no assumption that problem solving must involve inductive reasoning.  
Early on, observations of expert problem-solvers in a variety of fields, (such as Elstein, 
Shulman et al. 1978), demonstrated that that if the problem solver recognizes that he or 
she has solved a similar problem before, then all that is needed is to recall how it was 
solved last time, and do it again.  In fact, a common error is to mis-apply such recalled 
solution algorithms to new problems with superficial similarities to familiar ones.  Thus, 
inductive problem-solving models are likely to be used only to the degree that the given 
problem is novel to the learner.   

Note also the central role of prior knowledge (manifested as a schema) in problem 
representation.  The role of prior knowledge is central to problem representation and 
formulation of an appropriate problem solving strategy.  This is the key reason that 
problem-solving is context-bound.  It also means that far transfer of problem solving 
skills is problematical, and the conditions under which it occurs are not well understood.  
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Since far transfer is a central goal of general education at all levels, we presume that a 
range of experiences in various contexts is needed for far transfer.  However, it is not yet 
clear how to determine the range of contextualized problem solving experiences needed 
to achieve the purposes of education.  Nor is the role of abstract (decontextualized) 
problem representation in supporting far transfer well understood.  In professions 
education and training contexts, however, the implication is clear:  the context-bound 
nature of problem solving requires that training in problem solving occur in every context 
in which it is possible to predict the need. 

Problem solving also includes attitudinal as well as cognitive components.  To solve 
problems, learners have to want to do so, and they have to believe they can.  Motivation 
and attitudinal aspects such as effort, confidence, anxiety and stress, fatigue, persistence 
and knowledge about self are important to the problem solving process (Jonassen 2000).  
These factors are strongly influenced by the performance context, thus reinforcing the 
important role of contextualization in problem solving, and the importance of 
collaborative learning in the teaching of problem-solving. 

Jonassen’s review contrasts this understanding of problem-solving with the general 
problem solving methods developed in the 1960’s.  He concurs with the argument that 
problem solving is not a general, context-free skill.  Instead, it is clear that problem-
solving is a context-bound skill, in which experts synthesize their rich declarative 
knowledge to generate a dynamically changing, personal, working mental model of the 
system (problem space) suitable for solving a particular class of problems; they draw on 
an extensive reservoir of past experience solving analogous problems in the same 
domain, and they can set intermediate goals and switch between their corresponding sub-
problems according to strategies appropriate for problems of a given type.  Novices don’t 
know as much, and therefore have mental models which are less complete, poorly 
structured and even misleading.  Therefore, novices can’t simply imitate what experts do, 
because it doesn’t make sense to them.  The instructional challenge is to help novices 
develop initial mental models which are not misleading, and then to help them enrich 
their mental models to an expert’s level.  Simply recalling (or retrieving) well-structured 
solution algorithms is not enough. 

Cognitive scientists such as J.R. Anderson have long distinguished between declarative 
and procedural knowledge (Anderson 1995).  The former includes knowledge structures 
containing facts (“knowing what”), concepts (“knowing that”) and principles (“knowing 
why”).  The latter includes problem-solving (“knowing how”).  Newell and Simon (1972) 
further described a continuum of cognitive problem types differentiated by degree of 
structure inherent in the problem.  At one extreme are invariant, step-by-step procedures 
which can be recalled and applied to well-structured problems such as balancing a 
checkbook.  At the other extreme are loosely-structured problems, which have no single 
well-defined and agreed-upon solution; there may not be a fully satisfactory solution at 
all.  An example of a loosely-structured problem might be a design problem such as 
composing a painting.  To solve this problem, the artist might need to define his or her 
intent (e.g., by defining the desired effect or the “message” of the work).  The artist 
would probably also use materials and a style with which he or she is familiar, and 
perhaps recognize the client’s wishes (if it is a commission).  From all this would come a 
definition of the intended painting (the proposed solution).  Then, the artist would break 
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the problem in to a series of more structured intermediate tasks intended to reach the 
ultimate goal of the completed painting the artist had in mind.   

The distinction between declarative and procedural knowledge seems to fit well with 
what is understood about the importance of prior knowledge and mental modeling.  It 
suggests that declarative knowledge, however it is acquired, must be synthesized into 
mental models (or schemata) for a specific intended purpose of problem solving.  This 
has suggested to instructional designers (most notably van Merrienboer 1997) that 
declarative and procedural knowledge are best addressed with different instructional 
strategies, presumably in separate (but closely linked) events.  By contrast, accounts of 
constructivist learning environments rarely describe learning events explicitly for the 
purpose of acquisition of declarative knowledge.  Thus, they appear to prefer treating it as 
an incidental part of problem solving activity. 

Newell and Simon’s continuum of structure in problem solving also has endured, and is 
one basis of Jonassen’s recent typology of problems.  Problem-solving typically 
encountered in the world of work includes examples from throughout the continuum of 
cognitive problem solving types.  All jobs have many well-structured problems; most 
jobs have moderately-structured problems; many jobs have at least a few loosely-
structured problems. Particularly with the move to self-managing teams and flat 
management structures, the trend clearly is to include moderately- and even loosely-
structured problems in jobs in almost any work environment.  Thus, we can observe that 
the only part of problem solving which is ill-structured is the goal definition and the 
strategy;  the actual performance of step-by-step tasks is well-structured.  The 
implications for task decomposition in analysis, and for teaching of problem solving, are 
important. 

For design purposes, another point about the continuum of structure is useful.  If we think 
of problem solving in terms of input, process and output, then: 

• Well structured problems typically have well-defined inputs, processes and 
outputs. 

• Moderately structured problems typically have well-defined inputs, a range of 
alternative processes, and a range of outputs.  The processes and outputs typically 
include some that are clearly “wrong” and a number which are potentially “right” 
solutions. 

• Loosely structured problems typically have little definition of inputs, processes 
and outputs. 

This distinction is especially important in technology-based teaching of problem solving, 
because each point in the continuum of structure carries with it different implications for 
technologies which are feasible for construction of appropriate learning environments, 
such as instructional games, simulations and projects.  For example, this distinction was 
key to design of the PLATO Problem Solving Activity architecture. 

We previously noted that meaningful job tasks often include a mixture of problems at 
various points on the problem structure continuum.  For example, a team designing an 
advertising campaign would deal with the loosely-structured task of deciding the main 
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message of the campaign.  Once that is done, then there are many moderately-structured 
tasks such as selecting the media mix and designing the ads. Producing the ad involves 
many well-structured procedures for using the tools and stylistic “tricks” of the medium.  
The implications for task analysis are significant: any analysis of real-world problem 
solving is likely to include a variety of problem solving tasks at varying levels of 
structure. 

Solving moderately- and loosely-structured problems is inherently a far transfer task, 
since the performer works from prior knowledge and experience to the new problem.  
Even for workers who solve mostly well-structured problems (such as operating or 
troubleshooting common faults in any technological device), it is important to generalize 
to previously unencountered problems, and to adapt quickly to changes (e.g., new 
equipment models or software releases) without formal retraining.  This is another reason 
why moderately- and loosely-structured problem solving is becoming an increasing 
component of even apparently well-structured jobs, and why the need for training in 
moderately-structured and loosely structured problem solving is growing in the work 
place as well as in schools.  Significantly, Jonassen questions the common research 
assumption that well-structured problem solving skills chain together for transfer to 
moderate- to ill-structured problem solving.  Instead, he argues that problems require 
different problem solving skills depending on their degree of structure.  Thus it does not 
follow that transfer from well- to moderate or ill-structured problem solving is to be 
expected: they must be taught separately.  Note that this view is consistent with van 
Merrienboer’s 4C/ID model. 

We noted above that recall of solution algorithms for previously encountered problems is 
a common strategy.  Jonassen further notes that degree of apparent structure in a problem 
depends on its familiarity to the learner as well as its inherent qualities.  The first time a 
learner encounters a new problem, it appears to be ill-structured, even if objectively it is 
not.  When the learner has learned to solve the problem and remembers the solution 
algorithm, it no longer appears ill-structured.  Each time the learner recalls and applies 
the solution algorithm, it becomes more completely elaborated, and thus more structured 
for that learner, regardless of the problem’s objective degree of structure.  Thus, degree 
of structure in a problem depends on both its inherent structure (which can be determined 
by analysis), and the learner’s subjective experience with the problem.  This suggests that 
a novice problem solver may tend to view as ill-structured, problems which for an expert 
are moderate- to well-structured.  The implications for planning and assessing a 
progression of problem solving instruction are significant. 

Problem solving experience also affects mental model development and manipulation.  
Underlying problem solving is a mental model (schema) of the performer’s view of the 
system being manipulated.  A mental model is formed by experience in problem solving.  
John Anderson (cited above) believes the mental model is synthesis of declarative 
knowledge into a structure which is optimized for solving a certain class of problems.  
Solving problems typically requires performers to dynamically restructure and “run” their 
mental models of the system in order to predict the effect of a proposed action on the 
system or to explain an observed system behavior.  The complexity and structure of the 
user’s mental model depend on what problems the performer has experience with 
solving.  For example, the mental model needed to make a domestic telephone call 



Draft 5/16/05 for comments only/ Do not circulate 6 

includes only the visible parts of the phone, a little about the syntax of phone numbers 
and dialing prefixes, and almost nothing about the telephone network beyond the wall 
jack.  At the other extreme, the strategic problems a CEO must solve are fairly loosely 
structured, so the mental model the CEO needs of the company and its environment is 
quite elaborate and dynamic.  While mental models are elaborated and are manipulated 
with growing skill commensurate with experience in problem solving, we do not yet 
understand whether explicit learning of a mental model and its manipulation has a role, or 
whether this kind of learning can occur only incidentally within the context of problem 
solving experience. 

Troubleshooting is a special case worthy of discussion.  A common presumption is that 
troubleshooting is always a well-structured problem for which the solution is recalled or 
retrieved from a job aid.  But cognitive researchers (Tenney and Kurland 1988; Lesgold, 
Lajoie et al. 1992) have found that expert troubleshooters, especially when faced with a 
fault new to them, treat it as a moderately structured problem.  They generate the specific 
troubleshooting algorithm for the problem “on the fly” using their mental model of the 
system, experience with analogous cases, and ability to use the strategies for 
troubleshooting circuits of that type.  Experts may even prefer this strategy to “looking it 
up,” and they often criticize published job aids as inefficient because they often don’t rely 
on expert-level knowledge of factors such as component reliability, history of the unit’s 
use, previous repairs, etc.  By contrast, this kind of information is neither known, nor can 
its significance be understood, by a novice troubleshooter.  Furthermore, the moderately 
structured strategy help the expert troubleshooter adapt to new equipment models and 
changes in the technology.  The novice using well-structured strategies cannot adapt so 
easily and more often requires re-training. 

Jonassen’s recent review recognizes troubleshooting as one type of problem.  He goes on 
to further distinguishes 11 additional problem types and differentiates them by structural 
characteristics, including the learning activity, types of inputs and outputs, success 
criteria, type of context, degree of structure, and degree of abstraction.  Jonassen’s 
analysis does not include issues of instruction, but potentially, this typology may lead to 
differentiation of instructional strategy by problem type. 

How Should We Teach Problem Solving? 
The significant progress in our understanding of what problem solving is, reviewed 
above, has enabled a reconsideration of how problem solving is learned, and how to teach 
it.  In comparison, however, research on learning and teaching of problem solving is 
much less advanced. 

Working from the understanding of problem solving summarized in the previous section, 
and particularly from Jonassen’s review (Jonassen 1997), Foshay and Kirkley’s review 
(Foshay and Kirkley 1998) proposed these 15 instructional strategy principles for 
teaching problem solving: 

• For any “real-world” job or work skill, identify both the declarative and 
procedural knowledge components.  Give each appropriate instructional 
emphasis. 
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• First introduce a problem solving context, then either alternate between teaching 
declarative and procedural knowledge, or integrate the two. 

• When teaching declarative knowledge, emphasize mental models appropriate to 
the problem solving to come, by explaining knowledge structures and asking 
learners to predict what will happen or explain why something happened. 

• Emphasize moderately- and ill-structured problem solving when far transfer is a 
goal of instruction. 

• Teach problem solving skills in the context in which they will be used.  Use 
authentic problems in explanations, practice and assessments, with scenario-based 
simulations, games and projects.  Do not teach problem solving as an 
independent, abstract, decontextualized skill. 

• Use direct (deductive) teaching strategies for declarative knowledge and well 
structured problem solving. 

• Use inductive teaching strategies to encourage synthesis of mental models and for 
moderately and ill-structured problem solving. 

• Within a problem exercise, help the learners understand (or define) the goal, then 
help them to break it down into intermediate goals. 

• Use the errors learners make in problem solving as evidence of misconceptions, 
not just carelessness or random guessing.  If possible, determine the probable 
misconception and correct it. 

• Ask questions and make suggestions about strategy to encourage learners to 
reflect on the problem solving strategies they use.  Do this either before or after 
the learner takes action.  (This is sometimes called cognitive coaching). 

• Give practice of similar problem solving strategies across multiple contexts to 
encourage generalization. 

• Ask questions which encourage the learner to encourage the learner to grasp the 
generalizable part of the skill, across many similar problems in different contexts. 

• Use contexts, problems and teaching styles which will build interest, motivation, 
confidence, persistence and knowledge about self, and reduce anxiety. 

• Plan a series of lessons which grow in sophistication from novice-level to expert-
level understanding of the knowledge structures used. 

• When teaching well-structured problem solving, allow learners to retrieve the 
algorithm (e.g., from a reference card).  If the procedure is frequently used, 
encourage memorization of the procedure and practice until it is automatic. 

• When teaching moderately-structured problem solving, encourage the learners to 
use their declarative (context) knowledge to invent a strategy which suits the 
context and the problem.  Allow many “right” strategies to reach the solution, and 
compare them for efficiency and effectiveness. 
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• When teaching ill-structured problem solving, encourage the learners to use their 
declarative (context) knowledge to define the goal (properties of an acceptable 
solution), then invent a solution.  Allow many “right” strategies and solutions, and 
compare them for efficiency and effectiveness. 

Van Merrienboer’s (van Merrienboer 1997) 4C/ID model echoes the distinction between 
prerequisite (declarative) knowledge, algorithmic methods (well-structured procedural 
knowledge), supportive knowledge (mental modeling) and heuristic methods (procedural 
knowledge for moderate- to ill-structured problem solving).  In his view, each knowledge 
type has its own selection of instructional strategy alternatives.  For algorithmic methods, 
he suggests part-task practice strategies (gradually chaining together the full algorithm).  
For prerequisite (declarative) knowledge, he suggests just-in-time presentation strategies.  
For heuristic methods, he suggests whole-task practice, using instructional simulations 
and related techniques, by default in an inductive-expository strategy.  For supportive 
knowledge, he suggests methods which will promote elaboration and understanding, 
including case studies with a guided discovery strategy, and modeling of fully-worked 
examples with an inductive-expository strategy.  For each of the four general 
instructional strategies, he adds prescriptive principles which appear to be generally 
consistent with the Foshay and Kirkley ones.   

Underlying both the Foshay and Kirkley principles and van Merrienboer’s model are a 
number of key issues for definition of instructional strategies for teaching problem 
solving.  Among the most important are: 

• How should knowledge structures be represented to the learner? 

• How should the teaching problems be selected? 

• How should the teaching problems be sequenced? 

• How should we do cognitive coaching? 

• How should we teach mental modeling and cognitive strategies? 

• How can we measure proficiency in problem solving? 

• Does direct (tutorial) instruction have a place in teaching problem solving? 

We will discuss each of these questions in turn.  In discussing them, we will review 
current work on problem-solving teaching by a representative selection of current 
cognitive and constructivist theories. 

1. How should knowledge be represented? 
Traditional (behaviorally-based) task analysis methods for analyzing well-structured 
problems are well developed and understood by most designers trained in job task 
analysis (for example, see (Mager 1982)).  There have been a few attempts to develop 
and document practical and generalizable cognitive task analysis (CTA) methods for 
problem solving, such as the PARI technique (Hall, Gott et al. 1995).  However, like 
most task/content analysis techniques, CTA methods generally suffer from subjectivity: 
no two analysts would produce a substantially similar analysis if presented with the same 
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problem.  Furthermore, Gibbons, Nelson and Richards (Gibbons, Nelson et al. 1999) 
argue that the representations are often difficult to interpret, do not directly suggest 
designs, and are incomprehensible to the learner.  Thus, they are inefficient at best, and 
ineffective at worst. 

Rule-based vs. Case-based analysis.  The influence of work in expert systems and 
intelligent tutoring led to an early emphasis on analyzing problem spaces into structures 
of logical decision rules  (e.g., “IF you receive a busy signal, THEN hang up and redial.”)  
Schank and his associates have argued that this kind of knowledge structure has many 
inherent limitations which can be overcome by using case-based analysis (Schank, Kass 
et al. 1994).  Instead, they argue for use of cases, which are stories of actual problems and 
how they were solved (a ready source is “war stories” experts exchange, which they often 
find valuable because they illustrate some key heuristic principle or insight into the 
relevant schema).  Case-based analysis produces a rule set which is more “superficial” 
than rule-based analysis, and seeks to model descriptively only the behavior of the system 
in a particular circumstance (e.g., “When Ann used her office phone, this is how she 
made a long-distance call…”).  Schank argues that this approach has two advantages over 
the more common rule-based CTA: 

• It is more applicable to “real” problems, which are typically large, and “messy” 
(have irrational or inconsistent elements). 

• It is a better model of how experts really think. 

The second claimed advantage is particularly of interest here, since it goes to the heart of 
how one should teach problem solving.  Schank is among those who believe experts 
solve novel problems by reasoning analogically from previous experience with similar 
problems.  Thus, to teach problem solving, Schank believes one should directly teach 
“case studies,” with enough attention to the underlying problem structure so the case and 
its solution are stored (indexed) in a way which will facilitate future recognition of the 
relevance of the case to others like it.  

Scandura’s Flex Form analysis (Scandura 2001), used in a wide variety of commercial 
applications as well as structural learning theory, is an excellent example of the power of 
rule-based analysis.  Rule-based analysis is familiar to instructional designers using 
traditional task analysis of well-structured procedures.  Using the principles of SLT, 
Scandura has shown how it is possible to derive higher-order rules in a bottom-up 
fashion.  Working top-down, higher-order rules are of generative use in ill-structured 
problem solving.  Case-based analysis is treated as simply a special subset of the general 
analysis system.  This approach is at the basis of breakthroughs in structured design of 
large-scale software systems, and may well be of use in design of instructional 
simulations. 

Merrill’s Process, Entity and Activity Network (PEA-Net) (Merrill and 1 1993) is another 
rule-based knowledge representation technique which can be applied to problem solving.  
His Instructional Transaction Theory calls for mapping of an Elaborated Frame Network 
involving three types of elaboration: components (events, parts and steps in a process), 
abstractions (which define classes and subclasses of components), and associations  
(which are the meaningful links between processes, entities and activities).  The resulting 
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network thus incorporates both declarative and procedural knowledge.  The network may 
be close to a mental model representation, and can be used to generate instructional 
transactions of many types.  Presumably, the growth of the mental model from novice to 
expert level would be shown by adding components to the PEA-Net.   

The claimed advantages of case-based analysis may make it the preferred approach for 
training on moderately- and loosely-structured problems (Ohlsson 1995).  However, there 
remains the key issue of how to perform the analysis and how to represent the result for 
design purposes and to the learner.  Schank apparently goes no further than an intuitive 
gathering of “war stories” and construction of idiosyncratic prototypical case problems.  
A systematic analysis technique (which presumably would be “bottom up”) is not 
described.  A review of current methods (Gibbons, Nelson et al. 1999) found significant 
shortcomings with all current CTA methods. 

In this context, Gibbons, Nelson and Richards (Gibbons, Nelson et al. 1999) have 
proposed a Model-Centered Analysis Process (MCAP) as a more systematic and 
generalizable solution (discussed more fully in the next section).  MCAP provides four 
views of the problem: a problem structure view, an environment view, a systems view, 
and an expert performance view.  MCAP is essentially problem-based (or case-based) 
analysis.  While the result of an SLT analysis is a hierarchy of progressively more 
abstract procedural rules, and a PEA-Net is multi-node map, the result of an MCAP 
analysis is a hierarchical instantiation of the semantic string: 

In <environment> one or more <actor> executes <performance> using <tool> affecting 
<system process> to produce <artifact> having <qualities>. 

Thus, an MCAP analysis appears to capture procedural rules, but in a case-based, 
context-specific way.  Given our current understanding of the importance of context in 
problem solving, this is may be an important advantage.   

While PEA-Net, SLT analysis and MCAP are promising approaches for cognitive task 
analysis and design, a number of questions remain over their utility to learners.  For 
example, it is not clear whether it is useful to dialog with the learner about the structure 
of the problem space or schema.  It also is not clear if there is any benefit in presenting a 
structural map of the problem space or schema to the learner; many constructivist 
treatments have no such activity, or leave the structure’s construction entirely to the 
learners (often as a collaborative learning activity).  Finally, it is still not clear how to 
derive from the analysis a view of the problem space or schema which will advance the 
learner’s understanding.  If it turns out that the best method of representing the problem 
space or schema to the learner is specific to each context and each learner, it will be a 
major barrier to generalizability of problem solving teaching methods. 

2. How should the teaching problems be selected and sequenced? 
Given the severe limits on far transfer, it is obvious that learners need to work with a 
wide selection of problems.  Given what we know about novice and expert competency 
in problem solving, it seems clear that novices should work with a progressively more 
complex and realistic sequence of problems.  In the previous section, we referred to 
Jonassen’s and van Merrienboer’s skepticism over the current theoretical assumption that 
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novices can progress from well- to ill-structured problems; instead, it appears that 
different skill sets are involved and therefore it does not follow that learning well-
structured problem solving is prerequisite to learning moderate- to ill-structured problem 
solving.  However, we do not have a design method for specifying the needed set of 
problems, or for sequencing them. 

Gibbons (Gibbons, Nelson et al. 1999) proposes that MCAP analysis provides a way to 
remove the complexity from real-world problems while preserving their structural 
properties, the authentic essence of problems.  This design process, called “denaturing” 
(discussed further in the next section), calls for creation of novice-level problems which 
are structurally complete but artificially simplified through elimination of various 
elaborations and embedded well-structured procedures.  These problems are intentionally 
unrealistic in a specified way; they are not merely fractional subsets of real-world 
problems. 

However, there is the additional complication that degree of structure in a problem 
depends on what the learner already knows.  Therefore, to effectively prescribe a problem 
at the appropriate level of denaturing for a particular learner, we will need a way to 
predict how the learner will perceive the structure of a given problem.  Essentially, this is 
an issue of familiarity: the more similar a problem is to ones the learner has already 
completed successfully, the more structured the problem will appear.  Therefore, Gibbons 
suggests that by using problems of structural similarity and comparable levels of 
denaturing, it should be possible to plan a sequence of problems suited to the experience 
of each learner – but only if we know the history of the learner with past similar 
problems, or if we can measure the learner’s current state of mastery.  In a computer-
based simulation/game learning environment, this is quite feasible.  In other 
environments, it is more difficult. 

Note also that this principle of personalized prescription for problem solving may be an 
operationalization of Vygotsky’s “zone of proximal development” (Vygotsky 1978).  
This interpretation places Vygotsky’s concept in the context of contextualized problem 
solving, and thus implies that the zone of proximal development is an issue of individual 
experience with problems within a given domain (thus making it state-dependent).  It is 
not clear if there are also general developmental issues (trait dependency) underlying the 
zone’s definition for a given learner. 

3. How should we do cognitive coaching? 
Feedback to the learner in problem solving instruction can be at the tactical level of each 
well-structured step, or at the strategic level concerned with higher-order rules and 
problem space structures.  Most examples of problem solving teaching, such as intelligent 
tutoring systems, seem to do both.  There is some evidence (Lesgold, Lajoie et al. 1992) 
that simulations which include a “cognitive coach” to talk to the learner about strategy do 
improve learning efficiency considerably, when compared to conventional “dumb” 
simulations and lab exercises which practice defined procedures. 

In intelligent tutoring jargon, a “coach” is the part of the system which provides feedback 
comments and suggestions, hints, helps and other supporting information to the learner, 
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beyond the realistic responses of the simulation as the learner manipulates it (Orey and 
Nelson 1993).  The intended impression is that of a “master problem solver’s” dialog 
with the learner about the problem solving which the learner is doing.  In classroom 
settings, researchers are developing collaborative learning techniques to encourage 
teachers and small groups of learners to converse at this level, but it has proven to be a 
difficult skill to impart to teachers and learners (Blumenfeld, Fishman et al. 2000).  As 
with cognitive task analysis, design practitioners need much more experience with 
coaching designs over a much wider range of content and training contexts to develop 
prescriptions for what techniques work best under what circumstances. 

A related question concerns how useful it is to show the learner the procedure structure in 
advance, as opposed to having the learner discover it as the problem-solving exercise 
proceeds.  A generation ago, this was a key issue in the debate over “discovery learning.”  
Now, this is one issue in the quasi-ideological debate between constructivists and 
cognitivists, yet there is very little research specifically on this issue.  Van Merrienboer 
suggests that the preferred method for most learners is an inductive-expository approach, 
in which case problems are presented first and presentation of structure abstractions and 
discussion of similarities among case problems occurs afterward: in effect, a “bottom-up” 
approach to cognitive coaching.   

Van Merrienboer’s preferred inductive-expository sequence would have the effect of 
progressing the dialog with the learner from concrete-operational issues with the context-
specific problem, to more abstract-symbolic and context-independent representations of 
the problem.  Presumably, the learner then would be better prepared to attack structurally 
similar problems in a new context, so the dialog would then revert to the concrete-
operational, but in the new context with the new problem. 

Use of Gibbons’ “denatured” problems (discussed further below) presents a third 
alternative:  the “denaturing” should have the effect of making the high-level problem 
structure more visible and understandable to novice problem solvers.  This, in turn, could 
be expected to accelerate mastery of progressively more realistic and complex forms of 
similar problems. 

4. How should we teach mental modeling? 
In the previous section, we argued that mental modeling is a key skill in problem solving, 
yet it is often not addressed explicitly in problem solving instruction.  This raises the 
question of whether mental modeling should be taught as a prerequisite and scaffolded as 
a co-requisite skill for problem solving.  A variety of methods and technologies for this 
purpose have been developed (beginning, perhaps, with early experimentation with 
Hypercard and continuing today with tools such as Inspiration).  However, many 
experimental treatments in problem solving studies neither elicit nor scaffold mental 
modeling, in effect treating it as incidental.  So, while it is likely that explicitly teaching 
and scaffolding mental modeling is an important part of teaching problem-solving, 
research clarifying its position in complete problem-solving solutions is yet to be done. 

The challenge here is to get learners to think structurally, rather than just procedurally, 
about the problems they are solving.  A recent review (Atkinson, Derry et al. 2000) notes 
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how difficult it is to get learners to engage in this kind of thought.  Most learners do not 
spontaneously do so, and scaffolding of the dialogs within the context of solving a 
problem has met with only limited success. 

Atkinson, et. al. suggest that a powerful solution is pairing cognitive modeling of worked 
examples with closely related problem solving activities using scaffolded dialog.  In 
particular, they suggest that: 

• Worked examples and matched problems be closely interspersed. 

• Multiple examples be presented for each problem type. 

• Prompting and other surface features of the problems be incorporated which will 
emphasize the underlying structure of the problem. 

• Presentation of the example problem, solution actions, and discussion of the 
problem structure and solution strategies be closely integrated, using multiple 
modalities.  This is easily done in computer-based multimedia (CBT) formats (an 
example of this recommendation is the PLATO® Reading Strategies curriculum, 
which makes extensive use of think-aloud protocol-style worked examples of 
reading comprehension strategies). 

• The explanation make clear each component subgoal and underlying declarative 
knowledge. 

• A useful interaction is to provide incomplete explanations, and ask learners to 
supply the missing pieces. 

• The learning environment should include incentives to explain examples. 

• Worked example instruction be accompanied by direct instruction and prompting 
on how to self-explain examples. 

In the context of worked examples, it may be useful to use structural modeling tools 
(such as Merrill’s tools for building PEA-Nets, Scandura’s FlexForm or Inspiration, or 
symbolic representations specific to the expert’s profession) as a prompt to help the 
learner see the problem structure.  However, the recommendations above lead us to 
expect that learner use of such tools for mental modeling will require prerequisite direct 
instruction.  We believe incidental use of these tools for modeling is not likely to 
succeed, even with scaffolding. 

We would also predict that use of a progression of “denatured” problems, as discussed 
above, would be a useful means of combining use of worked examples and cognitive 
coaching to help learners focus on the underlying problem structures and cognitive 
strategies. 

5. How can we measure problem solving skill? 
It is clear that measuring problem solving skill requires a way to judge both whether the 
learner found a “correct” solution, but also how efficiently it was found, using what kind 
of knowledge structure and cognitive strategy.  Doing this with a high degree of validity 
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and reliability is a current topic of psychometric research(Goldman, Zech et al. 1999).  
Designers need prescriptive principles for design of problem solving measures and 
processes.  Jonassen’s typology (cited above) suggests a number of measurement 
strategies which could reveal various characteristics of the learner’s knowledge structure.   

However, guidelines for design of high-stakes tests for problem-solving are only now 
being developed.  Guidelines for design of rubrics for judging school classroom-based 
problem-solving activities are widely published, but the techniques are still relatively 
simplistic applications of ethnographic techniques.  They are labor-intensive, require 
considerable instructor training, and often are not grounded in a thorough cognitive task 
analysis.  This leaves the design practitioner with very few standard measurement 
procedures for problem solving skill, other than reporting the learner’s progress through a 
simulation, game or other classroom activity, and some observations from a “think aloud” 
dialog or other statement of rationale.  As Goldman et al report, interpreting these traces 
is subjective and difficult.  In turn, this makes it very difficult to state in generalizable 
terms just what problem-solving skills the learner has mastered. 

We view the measurement problem as complementary to the analysis problem, discussed 
above.  In our view, measurement has been an intractable issue precisely because 
prescriptively useful, efficient and reproducible cognitive task analysis techniques have 
not yet evolved.  Until we understand better how to analyze problem solving behavior in 
a way which is efficient and easily interpreted, we will be unable to deal efficiently and 
effectively with the measurement issue.  In this light, we believe PEA-Net, MCAP and 
Structural Learning analysis merit examination. 

6. When should we include direct instruction on declarative knowledge and 
mental modeling? 
The discussion of problem solving explained the important role of declarative knowledge.  
However, many constructivist solutions leave teaching of declarative knowledge implicit 
in their problem-based learning activities, and categorically oppose use of direct 
instruction.  At best, there may be some support of the learner’s exploration of 
information the problem domain.   

By contrast, van Merrienboer’s 4C/ID model calls for explicit provision of declarative 
knowledge on a just-in-time basis.  He argues that direct instruction is both effective and 
efficient for this purpose, though he recognizes that an inquiry approach can work if 
efficiency is not a consideration.  Depending on the complexity and difficulty of the 
declarative knowledge for the learner, this could be done through a combination of just-
in-time reference and tutorial methods.  In computer-based work environments, this is 
precisely the intent of the Electronic Performance Support System (EPSS).  In training 
and education environments, EPSS are virtually unknown.  However, the strategic trend 
in PLATO curricula (Foshay 1998) is to modularize heavily both tutorial and 
informational components, with the intent that they be used in a just-in-time basis during 
problem-solving.  This strategy is described in detail for PLATO as the “Problem-Based 
Instruction” strategy (Foshay and Kirkley 1998).  Consistent with van Merrienboer, this 
model advocates using tutorials within a context established by presentation of problems.  
It also requires that the tutorials and information presentations use examples and a frame 
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of reference consistent with real-world application of the declarative knowledge, so that 
the context of problem-based application is maintained. 

There is clearly a need for additional research, from a “neutral” theoretical perspective, 
on the question of when and how to teach declarative knowledge in the context of 
problem solving.  Specifically, tutorial strategies need to be evolved for this purpose, and 
we need to investigate issues of both efficiency and effectiveness of these strategies in the 
context of an overall instructional design for teaching problem solving. 

How Should We Design Problem Solving Instruction? 
At the start of this paper we posed the question “What is problem solving?”   The 
discussion of teaching problem solving in the previous section makes it clear that learners 
must solve problems, but these problems must have certain characteristics which enhance 
their instructional utility.  Thus, as we begin to discuss the design of problems for 
instructional use, the appropriate questions become “What is a problem?” and “How can 
problems be used instructionally?” 

Building on Jonassen’s definition of problem solving as “any goal-directed sequence of 
cognitive operations,” we suggest that a problem can be defined as a requirement to reach 
a goal by carrying out a sequence of cognitive operations in which at least one of the 
following is unknown: 

• The beginning state 
• One or more of the required cognitive operations 
• A satisficing sequence of operations 
• The goal itself (end state) 

The sense of problem solving has always been that the problem solver must synthesize 
one or more of these in order to reach a solution. If the learner already knows the 
beginning state, the operations, their sequence, and the goal, then the behavior required 
can be performed from implicit (automatized) or explicit (retrieved or reconstructed) 
memory. 

It is, therefore, a non-trivial step to go from asking, “How do we teach problem solving?” 
to “How should we design instruction that uses problem solving as its vehicle?” In the 
former, problem solving is the target behavior; in the latter, problem solving is a means 
of instruction for some defined target behavior and some degree of problem solving 
ability is assumed as an entry skill.  The target behavior often involves problem solving, 
but not necessarily: Duffy and Cunningham (Duffy and Cunningham 1996) identify “five 
strategies for using problems [instructionally] that reflect different assumptions about 
either what is to be learned or how learning occurs.” The five strategies may use 
problems as:  

• a guide or stimulus for independent thinking 
• an integrator or test 
• an example 
• a vehicle for process, and 
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• a stimulus for authentic activity. 
Basing instruction on a problem is one characteristic of a new instructional paradigm 
reviewed by Gibbons and Fairweather (Gibbons and Fairweather 2000), and by Hannafin 
and his associates (Hannafin 1992);(Hannafin, Hannafin et al. 1997).3  The assumption of 
virtually all problem-based instructional forms is that the problem will be used as the 
central organizing element of instruction.  Examples of a wide range of problem-based 
instructional approaches can be found in the Handbook of Research for Educational 
Communications and Technology(Jonassen 1996).  Section III of that collection of 
papers, edited by Robert Tennyson, shows that the trend toward the new paradigm has 
multiple sources, including research in cognition and learning, intelligent tutoring 
systems, and constructivist philosophy.  Articles by Grabinger (Grabinger 1996), Wilson 
and Cole (Wilson and Cole 1996) and Shute (Shute and Psotka 1996) describe a wide 
range of laboratory and public systems that exemplify this paradigm. 

Most “standard” instructional designs structure and organize instructional products 
around an inner framework of message and strategy constructs for the purpose of direct 
instruction4.  By contrast, the shared characteristics of problem-based products in general 
are: 

• Presentation of models of knowledge and behavior 
• Requirement that the learner form and/or solve problems 
• Augmentation of problem solving with tailored support  

Problem-based instruction is centered on problems and models of environments, cause-
effect systems, and expert performance (Gibbons 1998).  Learners are normally given a 
problem to solve within a problem-solving environment that provides problem 
manipulables and tools, resources, and expert instructional augmentations.  Problem 
manipulables may be a realistic model of a work environment or merely a neutral work 
surface that provides access to the tools and resources and a workspace on which to 
arrange and rearrange problem and solution elements until they fall into place.   

Designing instruction using the problem as the central organizing construct poses several 
questions to the designer: 

• What is instruction like when problems are used as the basis for event definition? 
• How can a person be instructed and solve problems at the same time? 

                                                 
3 Paradigm as it is used here differs from Reigeluth’s usage in Instructional-Design Theories and Models, 
Volume II Reigeluth, C. M. (1999). Instructional-design theories and models: A new paradigm of 
instructional theory. Mahwah, NJ, Lawrence Erlbaum Associates. 

 . Reigeluth refers to a new paradigm of research and theorizing. The use of the term here refers to 
a new style of instruction that makes unique assumptions about the structure and conduct of the 
instructional event, and therefore about the architecture and design of the product. 
4 Our use of the term “direct instruction” is intended to be generic, and not specific to Engelmann’s Direct 
Instruction. 
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• How does problem-based instruction interact with common instructional design 
conceptions? 

• How are problems generated, selected, and sequenced? 
• How are problem environments designed? 
• What are the implications for tools? 

We discuss these issues separately in the sections that follow.  

1. What is instruction like when problems are used as the basis for event 
definition? 
The surface forms of problem-based instruction vary widely. Sometimes the variations 
from more common forms of instruction are so great that familiar elements of 
instruction—such as set presentations, lesson boundaries, and session boundaries—
disappear.  This can be disquieting to designers used to using those components as 
orientation points or indicators of good design, as well as instructors using the 
instructional materials. The examples of problem-based instruction described below 
illustrate this diversity: 

Problem-Based Learning (Barrows 1988) – Problems are presented by a live tutor to a 
group of learners.  Problem resource books contain the problem data.  Group members 
are assigned responsibilities for keeping public charts that help the group record progress 
toward a solution and plan its solution activities.  A range of information resources is 
made available to the group.  Activity cycles between group work and individual 
information-gathering assignments. 

Anchored Instruction (Barrows 1988) – Problem-posing stories that contain all relevant 
problem data are presented using a medium that permits later random access to the 
elements of that data.  Problem solving is performed by groups of learners organized by 
different structures under different initiative-taking conditions, but usually under the 
leadership of a teacher.  Direct instruction, which can take different forms, is delivered on 
selected subjects as determined by need and at the time of need. 

Goal-Based Scenarios (Schank 1998) – Problems are presented to small groups or 
individual learners. The problem solving environment, normally computerized, provides 
controls for the learner to request information that is delivered as if by story characters 
having different perspectives on the problem. 

Anderson’s Tutors (Anderson 1993) – Problems that can be solved through the 
construction of an algorithm are presented in a computer-based problem solving 
environment that accepts the learner’s algorithmic operations.  An expert problem solver 
checks the operation applied and responds with corrective feedback for errors.  
Acceptable operations update the display to show solving progress and make ready to 
accept the next operation from the learner. 

Model-It (Jackson, Stratford et al. 1996) – Learners are presented with an environmental 
data base and a set of tools for analyzing, manipulating, and representing the data.  One 
or more problems are chosen, and the learners examine the data base for answers using 
the tools to spot patterns and trends in the data. 
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Reciprocal Teaching (Brown and Palincsar 1989) – Learners are assigned specific 
question-asking responsibilities within a problem solving group. A comprehension 
problem is posed to the group, and they proceed to model problem solving behavior by 
performing their individual question-asking and answering responsibilities. By this 
means, a model of problem solving is made visible to the group over repeated 
experiences. 

The PLATO® Problem Solving Activity (PSA): After an opening scenario, the learner 
enters an “adventure game” space with various tools and information available.  As the 
learner moves to a problem solution, a learner log is maintained for later comparison to 
an expert path.  An intelligent coach subsystem can provide full modeling (in “show me” 
mode), strategy- and tactical-level coaching (in “assist me” mode), or no coaching (in 
“leave me alone” mode).  The architecture is designed for collaborative learning, but can 
be used by solo learners. 

All of these examples and more that could be cited illustrate the variations in surface 
form that typify problem-based instruction. These examples differ in their use of media, 
modes of expression, manners of interacting, and the distribution of responsibility for 
learning, but all of them share the characteristic that they “involve pushing the student 
into a mode of problem solving on their own” (Collins, Brown et al. 1989), p. 483). 

2) How can a person be instructed and solve problems at the same time? 
The idea of learning by solving problems—which includes solving never-before 
encountered problems—is quite old, and occurs in every learning theory popular in the 
last century.  It is somewhat ironic that a prominent new theory of learning-by-doing 
called Cognitive Apprenticeship should contain in its own name the name of an 
instructional method as old as human memory can recall—apprenticeship.  

However, the notion of learning by doing or learning by solving problems appears on its 
face to be paradoxical because to solve a problem seems to require information that must 
be taught or conveyed before the problem can be solved.  Direct instructional models 
often resolve the paradox by using a tell-show-do instructional sequence.  By contrast, in 
the cognitive apprenticeship model (Collins, Brown et al. 1989), several instructional 
techniques are intended to resolve the paradox, including modeling, coaching, 
scaffolding, progressions of problems, and emphasis on problem solving heuristics and 
control, as well as learning to learn.  These techniques combine to support the learner’s 
own efforts to solve problems, and in the process the mental steps of discovery that are 
required of the learner become small enough that deduction, inference, search, and 
pattern matching can fill in the missing links between the problem and a solution before 
the learner’s patience and interest expire. 

As an example of the how the problem-based approach resolves the paradox, let us look 
further at the structure of a typical cognitive apprenticeship.  Two event structures are 
implied by the theory: the modeling event and the problem posing.  Instruction alternates 
between these two: providing exemplar performance that can be observed, studied, 
reverse engineered, and mimicked; and providing performance challenges that require the 
learner to apply to new situations the information, tactics, skills, and principles extracted 
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from models.  Where models don’t help, the learner can invent them at the moment of 
need.  In a cognitive apprenticeship, both recall-application and invention can be used to 
explain how learning takes place during problem solving. 

These event structures (modeling and problem posing) can serve as temporal centers for 
organizing the other learning-enhancing activities of cognitive apprenticeship (Gibbons, 
in preparation).  Different arrangements of enhancement activities define different 
instructional patterns; for instance, coaching before, during, or after problem solving 
(feedback).  Sequences of these events (including both modeling and problem posing) in 
turn become the problem sequences that make up the backbone of a problem-based 
curriculum. 

Although Schank (Schank 1998) makes a good argument for the value of errors to 
learning, we believe the positive support principles provided by cognitive apprenticeship 
probably provide the most efficient and effective foundation on which to build design 
prescriptions for problem-based instruction in the majority of circumstances, especially 
where entry level knowledge is relatively low when compared to the desired learning 
outcome.  Thus, we consider cognitive apprenticeship to be a particularly promising 
strategy for problem-based instruction.  The alert reader will recognize the PLATO PSA 
as broadly consistent with the cognitive apprenticeship model, especially when in a 
collaborative learning context the discussion enhances the modeling and problem posing 
provided by the intelligent coach. 

3. How does problem-based instruction interact with common instructional design 
conceptions? 
Problem-based instruction requires the use of different design languages.  The new 
design languages express structures for the: 

• design of problems 
• sequencing of problems 
• construction of environments 
• modeling of cause-effect systems 
• modeling of expert performance, and the 
• creation of instructional augmentations to support problem solving.  

Among the terms of the new design languages are “problem,” “control action,” 
coaching,” and “model representation.”  In contrast, the language of more common 
designs includes terms such as “task,” “objective,” “presentation,” and “lesson.”  The 
terms of both languages contain implicit and subtle assumptions about the division of 
instructional content, the partitioning and cumulation of instructional events, and the 
structure of instructional strategies.  They also are heavily biased by past practice in the 
manner of provision of instructional event control systems, the assignment of 
responsibility and initiative during instruction, and the structure of messaging elements.  

The standard for technology-based instruction has become—by usage and by tool 
structure—fixed in the form of the tutorial, consisting of blocks of presentation, 
demonstration and practice, often in a tell-show-do sequence.  These same instructional 
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components are found in a problem-based instructional sequence, but the learner is likely 
to encounter them in an event-driven sequence.  The event-driven design requires the new 
language of design constructs. 

Gibbons et al (Gibbons, Nelson et al. 2000) shows how it is useful to see the design of 
problem-based instructional products in terms of design layers, analogous to the layers of 
a building’s design—inner structure, outer skin, services, inner space partitions, and so 
forth (Brand 1994), Chapter 2).  We can characterize the several layers of an instructional 
design in terms of: 

• Building-block structures used at each layer 
• Principles that guide building block arrangement, alignment, and articulation 
• Layer-specific prescriptive theories  
• Layer-specific design decision-making processes 
• Layer-specific design skills 
• Layer-specific standards or styles and traditions 
• Layer-specific design and development tools 

The following list might exemplify a typical set of design layers for an instructional 
product.  After each, we have included in parentheses the analogous step in a standard 
instructional design process for CBT development: 

• Content/model layer—The layer where partitioning and organization of content 
structures takes place.  This layer expresses the assumptions of the designer about 
the forms and parceling of subject-matter elements.   

• Strategy layer—The layer where partitioning and organization of strategic 
structures takes place. Also the rules for the application of strategy elements are 
defined here. This layer is controlled by the instructional-theoretic bias or style of 
the designer. Problems are one of the main design building blocks at this layer.   

• Control layer—The layer where controls and their actions are identified. This 
potentially includes controls over the instructional event, the content, the 
message, and the representation.   

• Message layer—The layer where the messaging implications of both content and 
instructional strategy are embodied in a set of message tokens and the rules 
governing their assembly.   

• Representation layer—The layer where message tokens are channelized and 
mapped to representation tokens and where representation tokens are assigned 
specific representation resource values.   

• Data management layer—The layer where structures and rules for data collection 
and management are specified. Data collected in an adaptive instructional system 
are used by the strategy structures.   

• Media-Logic layer—The layer where the elements of media delivery are 
described and organized into structures. This layer is where abstract designed 
structures from other layers are matched with the constructs provided by a 
particular design/development tool.   
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At each layer of an instructional design a different set of constructs and principles is 
brought to bear.  Structures within each layer must articulate with those of each of the 
other layers, and all layers must align with development tool constructs (Gibbons, 
Lawless et al. 2001).   

It is the lack of a tightly articulated, layered design vocabulary that makes it so difficult 
to implement problem-based instruction using conventional CBT instructional design 
practices and tools.  For example, the event-driven structures of problem-based 
instruction, which allow the learner to use any sequence of actions while solving the 
problem, are extremely difficult to implement in a sequence-driven authoring tool.  In 
another example, management of adaptive instructional strategies requires some degree 
of expert decision-making, but existing CBT authoring tools do not provide this 
capability to the designer.  Therefore, our tools have tended to solidify the existing 
instructional paradigm and make the new one harder to choose (Gibbons and Fairweather 
2000).   

Viewing a design as many layers rather than in monolithic terms also leads to a new 
perception of the design process itself.  Rather than following a process, design becomes 
tracing the implications of a decision across layers, and each layer’s design unfolds 
uniquely as decisions are made as a result of work in other layers.  There is no inviolable 
sequence in which to design the layers: design constraints and design decisions both 
modify the proper order of design.  The designer determines the approach to each layer of 
a design and is motivated by the theoretical orientation (often self-originated) to that 
layer.  For instance, several approaches to the instructional strategy layer exist, each 
possessing its own set of constructs from which whole strategies are put together. 

Not all layers are required for every design, and for a given design/development project, 
the layers involved in the design may vary.  Decisions made within one layer place 
constraints on other layers and so influence their structures and organization.  A design 
approached with a particular instructional strategy in mind will differ from one in which a 
particular instructional medium is specified by the statement of the design problem.  

Different priorities are placed on the different layers by different designers, which 
probably accounts for a great deal of variation in design styles. Some designers prefer to 
design for a particular medium, some for a particular strategy vision, and some for a 
particular structuring of the message or representation. Each of these priorities influences 
the order of the designer’s decisions.  

Different designers choose different layers as the “backbone”—or primary structural 
element—of their designs, either by preference or by constraint.  A designer with strong 
tool background but little design training tends to favor media-logic structures as the 
primary organizational factor of designs.  A designer strong in strategy will use the 
structure of the instructional strategy as the controlling pattern of the product.  Problem-
centered designers think of course structures in terms of sequences of problem units, and 
most often those problems are the events that bring learners into interactive contact with 
one or more dynamic models.  Therefore, the designer with this commitment must also 
think in terms of the model units that stand behind the problems.  This is the key design 
priority of Model-Centered Instruction (Gibbons, Nelson et al. 2000).  In the future the 
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key skills of the instructional designer may well shift to emphasize the selection, 
sequencing, and posing of problems and the selection, sequencing, and presentation of 
dynamic models for interaction.  Note also that the layered approach is generally 
consistent with the principles of object-oriented programming.  The implications of this 
design approach for CBT authoring in general, and instructional simulations in particular, 
are substantial. 

4. How are problems generated, selected, and sequenced? 
Though there is a general trend in favor of problem-based instruction, there are few 
systematic methods for identifying problems and forming them into curricular sequences. 
In general practice, problems are derived mostly by individualistic rules, often on the 
basis of informed guesses. A disciplined technology of problem-based instruction, 
however, requires problem generation, selection, and sequencing to be replicable 
according to public, shareable principles. Useful problems are those that can attract and 
maintain learner engagement in problem solving.  

Useful problems have several characteristics: 

• Their scope corresponds with the structure of the larger curriculum plan, in 
terms of issues such as correspondence to the problem-solving skill being 
taught, and stage of expertise development. 

• Their length corresponds with time segmenting constraints 

• Requisite skills and knowledge match the target learner’s level of expertise 

• They can be expressed in terms within the learner’s frame of reference 

• Minimum modeling and representation requirements match media capabilities 

• Solving resources and tools are available or can be built 

• Problem development and delivery is affordable  

Problem sets are constructed through a process that involves generation, selection, and 
sequencing. Each of these is discussed in turn below. 

Generation.  The designer must generate a pool of candidate problems from which 
problems used in instruction may be selected according to the criteria above.  At present, 
generation usually takes place manually, but generation of problem sets is a concept that 
holds the key to scalable problem-based instruction systems.  Just as we now use random 
number generators to introduce variable data into problems, we need to systematically 
vary other problem parameters in an automated fashion. 

Detailed pre-design analysis increases in importance when problem-based designs are 
used.  It is the first step in generating problems.  In the previous section, we examined the 
potential advantages of two approaches: Scandura’s FlexForm, and Gibbons’ MCAP, 
over current cognitive task analysis methods, when applied to problem-based design. 
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Analysis, however, may take different forms and is not strictly limited to familiar forms 
of traditional task and objectives analysis.  For projects with limited time or budget for 
analysis, more direct approaches can be used that avoid detailing of individual tasks: 

• Typical work cycle (time focus) – A typical work cycle is examined to 
identify major activities carried out during one cycle.  These activities 
become the basis for specifying problems. 

• Use cases (user-goal focus) – Activity patterns of typical performers are 
examined to identify major activities.  Since performers often work within the 
same environment to achieve different goals, this analysis describes different 
kinds of performance problems that are solved from the perspective of 
different users. 

• Critical incident (high priority task focus) – For projects highly constrained 
in design, development, and delivery time, critical incidents that represent 
difficult, frequent, or especially challenging problems can be identified 
quickly. 

• Failure analysis (error focus) – For high-risk performance environments, 
analysis can identify typical failure scenarios and use them as the basis for 
specifying instructional problems. 

Note that these methods deal only with conglomerated tasks. The designer cannot make 
assumptions about completeness of such analyses: problem components that occur 
infrequently in real settings yet are critical to competent performance may be left out 
inadvertently.  

In many cases, detailed task analysis is mandated or routinely performed due to high risk 
or cost factors connected with performance.  Aviation and nuclear power training are 
examples of fields of practice that regulate training and trace training activities back to 
task-expressed training requirements.  When detailed task analysis is performed, 
additional approaches to problem generation become available: 

• Hierarchical task grouping – In addition to the use of individual tasks as 
problem bases, hierarchical branching-point tasks can also be used. 

• Combinatorial generation with filtering – Problems can be generated through 
repeated substitutions of analyzed elements in different, computed groupings 
into a tokenized problem string.  Generation by this means produces an 
enormous list of potential problems, so filtering rules are used to guide 
creation of only problems that might represent reasonable and useful 
combinations.  Generation with filtering is then followed by hand-selection.  

Instructional problems do not map one-to-one onto traditional task and objective 
hierarchies.  Problems within a set will often overlap, repeating tasks or solving activities. 
Research has defined intermediary structures that generate elaboration sequences 
(Reigeluth and Nelson 1998) and Work Models (Bunderson, Gibbons et al. 1981; 
Gibbons, Bunderson et al. 1995). In the case of work models, an intermediary is created 
that translates directly into a problem structure.  Carefully defined processes for 
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generating problem candidates are necessary if sequences are to be controlled with 
greater precision by designers in the future.  

Selection and Sequencing.  Problem selection principles should attempt to: 

• Maximize and maintain learner engagement 

• Regulate problem difficulty 

• Regulate desirable levels of experience duplication and review 

• Maximize the rate of progress through the body of intended learning 

• Maximize the value of problem order through calculated or empirically 
determined problem-to-problem transfer. 

The means for achieving such a balancing act are largely unexplored, and the issues listed 
above suggest questions for research.  The readiness of a learner for a particular problem 
changes moment by moment and depends on problems and experiences which have gone 
before.  The notion of transfer, always a difficult concept to operationalize, becomes even 
more complicated when it is seen in this way as a moving target.  

Burton, Brown, and Fischer (Burton, Brown et al. 1984), in a chapter titled “Skiing as A 
Model of Instruction,” describe the concept of increasingly complex microworlds.  This is 
the arrangement of learning problems into flexible orders according to their degree of 
challenge in a way that takes into account learner readiness and the conditions of 
instruction—in their example, on the ski slopes.  Problem difficulty is judged by a live 
instructor in terms of: 

• The difficulty level of a complex of tasks 

• The conditions available for task execution (slope, snow conditions, etc.) 

• The degree of proficiency demanded 

• The readiness of the learner to perform 

The instructor must include in this latter judgment the momentary emotional (confidence) 
state of the learner, the learner’s ability, and the size of challenge the learner is likely to 
enjoy.  A live instructor is involved in making these judgments in a semi-directive 
negotiating posture with the learner.  These are difficult criteria for computerized 
decision-making at present.  One of the four major sets of principles for cognitive 
apprenticeship—based in part on the increasingly complex microworlds idea—advises 
designers to increase problem complexity while increasing problem diversity, at the same 
time balancing global and local views of the body of expertise.  The analogy to 
Vygotsky’s Zone of Proximal Development was noted above. 

The existing standard for problem selection, therefore, is designer judgment, and that 
judgment is normally applied alike for all learners by a set sequence of problems. 
Contributing factors to this level of practice probably include cost as well as the difficulty 
of the decisions involved. 
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Some systems have been developed that focus on the automatic selection of problem 
sequences tailored for individuals.  Anderson (Anderson 1993) in a series of tutors that 
instruct highly structured subject-matter, bases the selection of successive problems on 
the rules shown to be mastered by performance on previous problems.  Because the 
subject-matters of Anderson’s tutors are highly structured (mathematics), and because 
certain rules are prerequisite to the use of other rules temporally and inclusively, the 
reasonable number of sequences is limited. 

White and Frederiksen (White and Frederiksen 1990) have researched progressions of 
mental models that facilitated the learning of electrical circuit principles.  They provide 
principles for identifying models underlying problems and provide principles for 
sequencing both models and problems.  Loftin, Baffes, and Hua (Loftin, Wang et al. 
1989) also describe a system capable of selecting a sequence of problems for individual 
learners based on prior problem performance which they constructed for NASA for the 
training of flight dynamics officers.  Newman, Grignetti, and Massey (Newman, 
Grignetti et al. 1989) accomplished a similar system for guided missile technicians.  
Their system is built around a core of simple problems whose complexity can be 
regulated mid-problem by introducing competing and interfering tasks. 

Sequencing decisions interact highly with generation and selection. A problem set can be 
a dynamic flow of problems rather than static edifice of them. For this reason, the goal of 
sequencing problems dynamically at the time of instruction, though a complex problem 
itself, is desirable in principle. 

Gibbons, Nelson and Richards (Gibbons, Nelson et al. 2000) identify several organizing 
principles for problem sequencing: 

• Maximum coverage in limited time 

• Cognitive load management 

• Integration of complexes of prior learning 

• Decontextualization of skills 

• Practice to automaticity 

• Maximum transfer 

Each of these sequences maximizes one outcome, and each consists of potentially a 
different set of problems but definitely a different ordering of problems.  

Problem ordering discussions take place from the learner’s point of view, but the 
implications can be great also for the designer.  The designer must create either a set of 
problems and an ordering algorithm or a problem generator and a set of rules to guide 
problem generation.  The generation option as a practical approach to design faces 
considerable difficulties.  Generation of problems means that a closed set of problems 
cannot be used as a design framework, so instructional strategy, message, and 
representation cannot be planned and compiled in advance but must also be generated.  In 
the early days of computer-based instruction, Suppes (Suppes, Jerman et al. 1968) 
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pioneered problem generation, but the subject-matter consisted of highly structured 
mathematics problems, and the expectations for strategy, message, and surface 
representation at that time were comparatively simple.  In today’s multimedia 
environment the challenge accepted by Suppes would be much more difficult.  But in the 
light of today’s increased software capabilities, we consider generation a reachable goal, 
at least in many content areas. 

If problem (and strategy and message and representation) generation is possible, the 
designer faces a new aspect of the problem sequencing question.  When a problem set is 
limited in its number of problems by selection, the sequencing algorithm for problems is 
relatively simple.  When the restraint on the number of problems is lifted and an 
unlimited number is possible, then the sequencing algorithm must be considerably more 
detailed and complex, controlling and deciding a large variety of problem variables.  The 
curriculum in this case, rather than being an ordered set of problems of increasing 
difficulty, becomes a field of problems which, in order to cross, no two students need step 
on exactly the same sequence of stones. 

The ability to generate problem sets and problems at the time of instruction would resolve 
many scalability issues for problem-based instruction. The Power Law of Practice, 
proposed by Newell and Rosenburg (Newell and Rosenbloom 1981), suggests that 
opportunities to practice reduce the time of performance—in essence helping with the 
automatization of the performance.  It seems reasonable to believe that this law applies as 
well to the automatization of performances that involve problem solving in the original 
learning.  If so, the ability to create numbers of similar but not identical problems without 
linear cost increases has benefit for learning of higher-order, complex cognitive skills in 
the same way additional practice can leverage automatization of common skills.  Problem 
sequences that offer rapid-fire presentation of problems with smaller increments of 
difficulty may make possible sequences involving one longer problem followed by many 
shorter problems to maximize both learning momentum and time.  Reducing the 
incremental difficulty between problems also suggests the possibility of less learning by 
direct instruction and more learning by the act of problem solving itself.  Efficiency and 
effectiveness tradeoffs between direct instruction and this kind of intensive problem 
based instruction have yet to be researched. 

Researching basic questions of problem generation, selection and sequencing requires 
much work, however.  Progress will be slow until we have better typologies for problems 
and better metrics for describing between-problem relationships. 

5. How are problem environments designed? 
Problem-based instruction replaces the familiar central structures of message and strategy 
with a problem solving environment and its auxiliaries.  Within this environment 
problems are posed and the learner is given access to models, resources, and tools to use 
during solution.  Figure 1 below illustrates the main elements of this environment. 
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Figure 1. Elements of a problem solving environment 

(from Gibbons & Fairweather, 2000). 

 

 

The figure shows a main division between the model environment and four auxiliary 
functions: problem administration, instructional augmentation, resource access, and tool 
access.  The elements of the model environment provide interaction with models of three 
kinds: environments, cause-effect systems, and expert performance.  The system models 
model the behaviors of cause-effect systems, whether natural (photosynthesis) or human-
made (a computer).  Expert performance models model the behavior of expert performers 
with respect to those systems: either to observe them in operation or to manipulate their 
values and note the resultant changes.  The environment model, the most subtle of the 
three, models the interaction of the systems with the environment they normally inhabit. 
This environment model contains one or more information-bearing locations (marked 
with an “L” in the figure).  These locations are points at which the learner may see 
indications telling the current state of the system models.  Also at these locations the 
learner may act on controls that convey new states to the models, resulting in observable 
reaction to the learner’s action. 

A flight simulation program found everywhere in software stores exhibits models of these 
three types.  The user is placed in control of an aircraft and its systems.  An expert pilot 
may be invoked to fly the aircraft to provide a demonstration of expert actions and 
thought patterns.  A mostly-invisible environment of air surrounds the aircraft, containing 
winds and weather that influence aircraft flight and place demands on the user’s problem 
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solving.  The main information-bearing location in the average flight simulation is the 
view of the aircraft cockpit.  From there, indicators of all the aircraft’s systems can be 
observed, and controls can be operated.  Some simulations allow other perspectives that 
provide useful information, including views from the ground, or from another aircraft 
flying beside the one operated by the learner. 

Together, these three types of model constitute a model environment that operates within 
the larger problem solving environment.  The problem solving environment provides 
additional supports that give interactions with the model environment their instructional 
value.  These supports include one or more problems that can be posed with respect to the 
models.  Students solve the problems by interacting with the models.  Augmentation 
experts observe the interactions with the models and guide, judge, and assist with 
appropriate messaging and commentary.  Tools placed within the problem solving 
environment are used by problem solvers to manipulate or represent problem data as 
decided by the learner. Tools can include spreadsheets, graphical tools, data analysis 
tools, report-building tools, or any other specialized tools that are normally used by a 
performer within the environment being modeled.  Resources are also placed within the 
problem solving environment to supply information for problem solving or materials 
from which to build the solution or a response. 

There are benefits to viewing the architecture of a problem-based instructional product in 
this way.  First, each of the functional units described may be considered independently 
for media assignment.  The architecture described makes no assumptions about media.  
Different elements can be executed using any appropriate medium, including live 
persons, physical structures, or virtual software structures. 

Second, the elements of this architecture can be created as independent, portable modules 
capable of being reused.  An analogy is to a spreadsheet.  This mathematical tool can be 
executed using paper and pencil or computer, and the tool itself can be reused in problem 
solving environments other than the one it was specifically designed for.  The same is 
true of the elements of the model environment as well: they may be designed to be 
portable across problem solving environments.  This suggests several uses for the 
independent instructional object (Wiley 2000). 

Third, this architecture separates the problem from the problem solving environment.  
The problem itself can be studied as an instructional device in its own right.  The 
dimensions and properties of problems can be determined; the principles for problem 
construction and generation can be tested; and more detailed and general principles for 
problem sequencing can be derived because the problem can be considered apart from its 
content.   

Designing interactive models and problems assumes that the models will differ in one or 
more ways from real objects, settings, and situations.  It is the nature of models to be less 
than real.  It is appropriate to say that every model experience is denatured in some sense.  
Therefore the experience learners get from interactions with the model during problem 
solving will be less than full-fidelity.  The principle of denaturing is critically important 
to the construction of problem-based instructional products because costs normally 
decrease for more denatured models and increase for less denatured ones.  The designer 
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of problem-based instruction can design with more precision and less cost if it is known 
what elements of models and problems require fidelity and which have low marginal 
contribution in terms of learning.  Furthermore, as mentioned above, it may well be that a 
denatured problem will help the learner perceive the underlying problem structure early 
in the sequence of problems.  Research in this area is badly needed.  

6. What are the implications for tools? 
What may have seemed at first as a simple shift to include problems more centrally into 
instruction, on closer examination appears to have profound implications for basic design 
assumptions, design processes, and product architectures.  These implications ripple 
outward also to include needs for new or modified development tool capabilities.  The 
requirements of the tutorial structure have long dominated tool structures, leading to 
programming-eliminating frames, menus, interfaces, and authoring systems.  With the 
emergence of problem-based instruction as a major trend, development tools will now be 
called upon to provide capabilities that are required not for efficiency in delivering 
message or executing structured strategies but for efficiency in developing interactive 
models, problem sets, and instructional augmentations to problem solving such as 
coaching and feedback systems.  

A projection of these new demands on tools was attempted by Gibbons and Fairweather 
(Gibbons and Fairweather 2000), who suggested the following areas either for new 
capabilities or strengthening and facilitating of existing capabilities: 

• Facilitation for environment and location building – The locations within an 
environment are the points of interface through which the learner interacts 
with the controls and indications of a model during problem solving.  Future 
tools should provide for the construction of environmental locations as 
unitized objects, and it should be possible to link individual locations into 
larger, integrated environment suites with linking paths between the locations.  
This should include the construction of both the underlying and the surface 
properties of locations.   

• Facilitation of model building and integration – Tools for model building 
exist, but these tools must become accessible to the average designer and be 
capable of constructing a range of model types without specialized training or 
programming skills.  Moreover, building suites of models that represent 
progressions from simple to more complex must be facilitated.  Integration of 
these models with problem data sets must be made as non-technical as 
possible. 

• Facilitation of expert system building and integration – Providing expert 
performance models and expert augmentation systems for coaching and 
feedback are only two areas of problem-based instructional products that 
require the construction and integration of expert systems.  Expert systems 
will also be useful in the construction of problem sequencers.  Development 
tools do not now provide for easy creation or integration of expert systems 
with developed products. 



Draft 5/16/05 for comments only/ Do not circulate 30 

• Facilitation of thread building – During problem-based instruction that 
features expert augmentation it is often necessary to simultaneously provide 
interaction with one or more models while at the same time providing expert 
augmentation services. These parallel functions represent multiple threads of 
execution. Tools must in the future provide access to the designer for the 
creation and management of these threads. 

• Facilitation of integration – Unification of models, problem managers, and 
instructional managers into functioning products that orchestrate and 
coordinate their individual functions will require the ability to plan and 
develop higher-level architectural structures.  These must be made accessible 
to the designer. 

• Facilitation of data management – Problem solving interactions produce 
copious amounts of potentially useful data.  Difficult-to-use variable-keeping 
systems available in development tools are a hindrance to the creation of 
systems that can handle this large amount of data and supply it in a timely 
fashion to decision-making processes during instruction.  This capability is a 
requirement if adaptivity during problem solving is to be achieved.  

• Facilitation of in-product tool building – Tools to be used during problem 
solving must be made easy to attach to problem solving environments as 
standard interface overlays or as integrated elements of displays.  The means 
for the creation of new tools and their attachment to problem solving 
environments will be a growing area of need. 

• Facilitation of multisource message/display management – Not only must the 
integration of individual functional modules be possible, but also the designer 
must be able to integrate the various messaging and information contributions 
of each to a common, shared display surface.  Interface-building functions that 
manage multiple source inputs must be made available to the designer. 

• Tools for model constraint – Greater use of individual models can be achieved 
if models can be masked or constrained and then revealed as the complexity 
of problem challenges increases. 

• Support for group processes – Both design and training functions are 
becoming group-oriented. Tools must in the future provide collaborative 
surfaces for both the design and delivery of instructional events.  

Advances in top-down design technologies for large-scale object-oriented software 
systems hold promise for meeting many of these needs.  One step in this direction is the 
WebPLATO authoring technology.  This technology is built on a carefully structured 
class library of proprietary objects, with only the foundation classes provided by a 
commercially-available web authoring tool set.  Thus, rather than working directly in the 
web tool set, a series of editors provides for automated input of the properties for each of 
the high-level objects.  A future step in the direction of meeting these requirements may 
be through application of next-generation general software design tools (Scandura, 
personal communication). 
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Conclusion 
This review demonstrates that while there has been considerable progress in our 
understanding of problem-solving behavior and how it is learned, the current 
corresponding theories of instruction for problem-solving generally lack the precision 
needed for generalizable instructional design practices.  We have examined some 
promising new sources of instructional theory, and discussed key requirements for 
problem-based instructional design.  We have argued that problem-based design 
represents an alternative to conventional message-based design.  And, we have outlined 
the requirements for a new generation of authoring tools and technologies needed to 
support problem-based instructional design. 

We believe the problem-based design system proposed here, when it has matured into a 
stable and reproducible technology with a complete tool set, will offer a number of 
advantages over current practice in problem-based instruction: 

• Close linkage of analysis, design and development.  Current practice isolates 
analysis, design and development, which leads at best to considerable wasted 
effort as the work products of one phase are reworked in the next.  At worst, this 
disconnect allows the developer to ignore key analysis and design insights.  We 
believe the layered design system outlined here holds promise for a much more 
efficient and effective system. 

Furthermore, because of the denaturing issue we discussed, and because degree of 
structure is in the eye of the learner, there is a tight linkage between analysis 
technique, assumptions about the learner, and intended design strategy.  The kind 
of layered analysis and design system described here supports this tight linkage. 

• Increased precision of analysis and design.  In current (constructivist) practice, 
analysis and design procedures and standards typically lack precision.  This 
makes the work products very idiosyncratic: no two designers would produce 
similar designs for a given topic.   

• Better measurement of learning outcomes.  The lack of precision in current 
practice also has frustrated efforts at precise description and measurement of 
learning outcomes.  This, in turn, has led researchers to advocate ethnographic 
methods of assessment which are costly in large scale and difficult to scale up.  
We believe progress in analysis and design is the key prerequisite to improved 
measurement of learning outcomes. 

• Improvement in cognitive apprenticeship.  Cognitive apprenticeship has generally 
been descriptive, not prescriptive, therefore is not a design theory.  We believe the 
kind of prescriptive theory for analysis and design outlined here will greatly 
strengthen the cognitive apprenticeship model.  Specifically, it will provide a 
systematic way to design problems with maximum instructional utility, to scale 
and sequence those problems, and to describe the learning outcomes precisely.  
Every increment in systematizing what is now a largely intuitive process will help 
reduce the cost of problem-based instruction and improve its scalability. 
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An additional implication concerns the distinction we made between tutorial (message-
based) and simulation (problem-based) instructional strategies.  The distinction is 
certainly common in the literature, often accompanied by an explicit or implicit 
assumption (from a constructivist perspective) that tutorials are inferior.  The problem-
based instructional design perspective offers a different view.  Using problem-based 
design, a tutorial is just a highly structured and (usually) denatured case of simulation 
with coaching and feedback.  Thus, the tutorial is one end of the continuum, and fully 
realistic simulation is at the other.  Varying stages of denatured instructional simulation 
are in between.  There are critical implications of cost, technology and instructional 
efficiency associated with each point on this continuum.  Thus, the decision of where to 
place a given instructional event on this continuum is essentially a cost-benefit decision.  
We therefore reject attempts to categorically dismiss any instructional strategy on the 
continuum on the basis of learning theory. 

We argued that multiple analysis techniques will be needed for multiple purposes, and 
any given analysis and design will necessarily be relatively purpose-specific.  As noted in 
our discussion, this is quite consistent with the principle of layered design.  Thus, 
problem-based, layered analysis and design is likely to evolve as a family of design 
principles and techniques suitable for various contexts. 

There are also implications for the feasibility of reusable learning objects (as in the IMS 
project).  Work so far on reusability has largely been content- and message-centric.  The 
design layers discussed here generally are left implicit, and presumably are embedded in 
the reusable learning objects.  This inevitably makes the learning objects much more 
context- and learner-specific than would be desirable, and limits their reusability.  We 
believe it may more desirable to use a problem-based design with a layered design 
approach as described here.  This approach should allow for reuse of certain aspects of 
the design across contexts, thus strengthening reusability of objects. 

Ultimately, our ability to articulate a practical, stable, reproducible and cost-efficient 
system for problem-based analysis and design will determine the success of the method, 
especially in computer-based instructional environments.  Current practice, in both live 
instruction and in computer-based environments, is intuitive and labor-intensive.  Each 
evolutionary step in development of the proposed layered design system will engender 
improvements in instruction, especially in automated instruction. 
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