Tech., Inst., Cognition and Learning, Vol. 2, pp. 249-260 © 2005 Old City Publishing, Inc.
Reprints available directly from the publisher Published by license under the OCP Science imprint,
Photocopying permitted by license only a member of the Old City Publishing Group

Do WE NEED AUTHORING SYSTEMS?
A COMMERCIAL PERSPECTIVE

WELLESLEY R. FOSHAY* AND FRANK PREESE

PLATO Learning, Inc

The basic cost of development for the various types of e-Learning has
not changed much in a generation. Authoring systems for e-Learning in
all its forms has not progressed as quickly as general-purpose software
engineering tools. As a result, most e-Learning today is created using
general-purpose tools, the types of e-Learning products created are
limited by the costs of development, and productivity gains have been
largely limited to creation of media assets. To provide productivity
gains, authoring systems need to address all phases of development and
maintenance, they need to be designed for use by large, matrix-managed
teams, and they need to meet the needs of large-scale production coding
environments. Each of the major strategies for tool development has
tradeoffs in terms of these requirements.

Keywords: e-Learning Authoring, e-Learning development productivity

The good news is that the explosive growth in e-learning over the last
decade has led to many more authors creating much more e-learning
content. The other piece of good news is that there are a great many more
instructional models for e-learning in common use than was true even as
late as 1990. Back then, the dominant model was direct tutorial instruction,
a highly interactive emulation of a “Socratic Dialog.” Today, it appears that
proportionately little of the e-learning content produced uses the tutorial

*Corresponding author: rfoshay @plato.com

249



250 GARCIA, et al

model, even in its theoretically current form. Most of what is being
produced now appears to draw inspiration from the classroom lecture and
the textbook, rather than the frequent interaction and feedback of well-
designed computer tutorials. Online content presentation in the majority of
examples appears to be akin to assigned reading, with meaningful
interaction restricted to later e-mail or chat room exchanges. Other
instructional models (such as project-oriented “WebQuests” and various
kinds of interactive problems, simulations and games) are found
occasionally, but appear to be relatively rare in use — at the very time that
access to computing has become nearly ubiquitous.

The emergence of easy to use tools for creating all types of digital
content has all but eliminated most specialized e-learning authoring
systems. For a generation, such systems were common. For example,
descendants of the PLATO system’s original mainframe language, TUTOR,
include over a dozen authoring systems, most recently Macromedia’s
Authorware. However, these systems did not transition well to the
contemporary browser-based platform (presumably because sales were too
small to justify the investment). Most e-learning content is now created with
a variety of general-purpose HTML/XML web authoring tools, perhaps
supplemented by Flash or Java. Specialized e-learning authoring tools in
common use today, such as those included in the Blackboard platform, have
less to do with instructional models and interactivity and more to do with
integrating with the platform, publishing and communication. Today’s
general purpose tools do little to facilitate systematic, theoretically-
grounded instructional design and development. The marketplace appears to
have concluded that the benefits gained by using a specialized authoring
tool to facilitate the processes of instructional design at any phase of the e-
learning creation process do not exceed the drawbacks of the time required
to master such tools and the additional complexity for deploying the work
product to a large audience. Thus, while there is a lot more e-learning
content now, it is being made with tools which are instructionally “dumber”
than those of a decade ago. [ronically just when the instructional state of the
art has progressed, little of that progress is reflected in the tool sets in broad
use. In effect, we have regressed instructionally. We are over a generation
into the age of e-learning, but only a decade into the age of the Internet.
Perhaps people don’t change as fast as computers, and e-learning is still in
the uncritical “gee whiz!” phase of early technology adoption.

We should ask if the current status quo is really satisfactory. Are there
unmet needs which better authoring tools might cost-effectively meet? Our



Do WE NEED AUTHORING SYSTEMS? 251

perspective on the question is that of PLATO Learning, Inc., a large (over
$140-million) enterprise with a 40-year e-learning heritage. In a typical year
the company produces over 400 hours of e-learning products using a variety
of models. These models include tutorials, intelligent tutors, instructional
simulations and games, supplemental multimedia informational products,
assessments, collaborative learning environments and knowledge bases, for
use by our clients and internally. We maintain a library of over 4,000 hours
of e-learning products, most delivered via the Web as tens of millions of
student-hours of learning per year, world-wide.

To decide if there is really a need for e-learning authoring systems, it is
useful to consider four issues: the economics of e-learning development, the
dynamics of development teams, the needed instructional models, and the
technical requirements of a large-scale commercial production and delivery
environment. We will address each of these issues next.

THE ECONOMICS OF E-LEARNING AUTHORING

One of the biggest limiting factors on the growth of e-learning has been
the cost of development. Our experience is that tutorials require around 200
hours of development effort to produce one hour of completed product;
simulations, games, and intelligent tutors require between 200 and 800
hours per hour of completed product to produce. Less interactive
presentation models typically require up to 100 hours per hour of instruction
to produce. Development ratios as low as 40:1 have been reported for some
kinds of resource creation which limit themselves to on-line text and the
occasional drawing, with interaction confined to chat facilities during
delivery. Furthermore, our experience is that these cost ratios have not
substantially changed in a generation.

While the cost ratios have not changed materially, the production values
have improved substantially. As the media capabilities of the e-learning
tools have improved, graphics, audio, video and advanced text designs have
been used to engage the learner and facilitate instruction. The biggest gains
in productivity for e-learning have been in media production, made possible
by the current generation of general-purpose media production tools. The
market has shown us that more media-rich products are required to be
competitive. Producing these products can be done for very little additional
cost compared to a decade or more ago.

With the authors in this issue, we wonder what potential there is for



252 GARCIA, et al

productivity gains elsewhere in the e-learning development process. It is
interesting to begin examination of this question by seeing how the costs of
development array over the phases of the development process. While
practices vary by product type and producer, in our experience development
costs up to release to Beta Test are distributed roughly like this:

1. Front-end content/audience analysis: 20%

2. Instructional strategy definition, rapid prototyping, scripting and
storyboarding: 30%

3. Creation of media and software assets: 20%

4. Integration of components and testing: 30%

It should be clear that the improvements in productivity offered by current-
generation general-purpose production tools affect only Step 3 and part of Step
4, or roughly 30% of project cost. In other words, up to 70% of production cost
is not addressed by current general-purpose web authoring and learning
management tools. This should make it clear why the costs of development
have not changed much in a generation, and why productivity gains have been
essentially limited to increased use of and better integration of media. It is also
interesting that the current e-learning authoring tools are adept at packaging
assets but do little to facilitate testing of either software integrity or instructional
designs. In order to gain productivity in testing, a producer will turn to general-
purpose software testing tools, but these help only with software integrity. A
significant investment has to be made in these tools before real productivity
gains will be seen. As a result, the small gains in productivity have not resulted a
net reduction of e-learning development cost.

There is an important Phase 5 in most products: maintenance and
upgrade, whose costs can be substantial. In a typical PLATO product life
cycle, products will be upgraded as a result of instructional improvements,
localization to additional markets, development of derivative products,
platform changes, upgrades to media assets and interfaces, bug/error
remediation, and content changes. Since PLATO products often have a life
cycle of a decade or more, it is likely that all these modifications will
approach or even exceed the initial cost of development.

E-learning producers have reacted to this cost structure by using three
strategies. The first strategy has been to limit use of highly interactive
product types. For the most part, the highest-cost types of e-learning
(tutorials, intelligent tutoring, simulation and games) have been largely
limited to the few applications where there are a very large number of



Do WE NEED AUTHORING SYSTEMS? 253

learners (and cost per learner is thus low), or when the need is of sufficiently
high criticality to justify a high cost per learner — and the consumer is
sufficiently sophisticated to value such costly products. An example of the
former case is a typical PLATO course, which will serve millions of school
and adult learners over its life span. An example of the latter case is a pilot
training simulation, where lives depend on effective learning by a small
number of learners, and alternative means of training (in real planes or fully
realistic flight simulators) are unacceptably dangerous or costly.

The second strategy has been to emphasize use of the lower-cost e-
learning product types, such as online text publishing with limited
interaction, even when these entail higher cost later on (in effect, by moving
most interaction costs to the delivery phase). Examples here include the
great majority of “virtual college” or “virtual school” distance learning
applications — delivered, for the most part, to relatively small numbers of
learners who do not value (or are unaware of the value of) the more
interactive, higher-cost e-learning options. This is the primary market for
most of the learning management systems for distance learning.

The third strategy has been to reduce costs of the third and fourth phases of
development (media asset production, integration and testing) through use of
standardized templates and reusable code (ranging from standard objects for
learning management integration and bandwidth management to clip art to
templated interaction sequences). Already mentioned is use of tools to automate
certain repetitive tasks occurring in media creation and software testing.

Interestingly, nearly all current, commercial general-purpose web
development tools combine the second and third strategies. Most e-learning
creation tools have focused on the first and second strategies, but have done
relatively little with the third. PLATO Learning and some other large-scale
developers have attempted to streamline development of the high cost types
of e-learning, by using proprietary tools for limited purposes and well-
defined repetitive tasks.

If we look at this trend by phase of development, it becomes clear that
commercial web authoring tool development has focused almost
exclusively on the third phase of development — roughly 20% of initial
development cost. Proprietary and third-party tools have sometimes
attempted to automate some of the repetitive tasks in the fourth phase — the
last 30% of development cost. But again, these efforts have been largely
limited to the low-cost product types. There have been very few recent
commercial attempts to automate any phase of the production of complex
product types such as tutorials, intelligent tutors, instructional simulations



254 GARCIA, et al

and games (though tools for non-instructional application are available).
There have been very few attempts to automate the first two phases — 50%
of development cost— for any product type. Furthermore, maintenance and
upgrade has been mostly ignored. In the general world of software
engineering, enterprise-grade development tools go to great lengths to ease
the cost of maintenance and upgrade; this is rarely true of e-learning
authoring tools. We conclude that commercially available tools in common
use today for general web authoring or for e-learning are missing a great
many opportunities for automation and that is why there has been so little
progress in reducing the costs of e-learning development, especially for the
complex product types.

What is missing are tools which automate and integrate as much as
possible of all four phases of initial development, as well as maintenance
and upgrade, and do so for the highest-cost/value product types.
Unfortunately, there probably are not enough producers of the high-cost
product types to make such tools commercially viable on the open market,
so these tools will probably continue to be proprietary or otherwise
developed privately on a non-commercial, research or one-off project basis.
For the most part, the tools described in this issue seem to concentrate on the
second, or first and second, phases of the process; and they do so for the
higher-cost product types. We view these efforts as urgently needed and
very promising, but their productivity gains are mostly unproven in
commercial production environments.

In general, since the tasks of the last two phases of initial development
are the most standardized and repetitive, it is most likely that these tasks are
best suited to automation through tool development. These tools are likely
to have the broadest generality across a range of product types. However
such gains will do little to improve the instructional design of the e-learning
created by these authoring tools unless the producer makes a concerted
effort to do so. Thus it may be that the biggest short-term gains in
productivity will come in the last 50% of the e-learning development
process, rather than the first 50% where the tools in this issue are focused.

THE DYNAMICS OF DEVELOPMENT TEAMS

In a typical large-scale development organization, development
processes are very non-linear, and they are performed by large teams with
varying roles and skills specialization (often a dozen or more roles, in teams



Do WE NEED AUTHORING SYSTEMS? 255

of up to 100 in size). The teams are likely to be geographically dispersed, so
in a real sense the team resides on the global corporate network. The
products are complex, encompassing thousands of files in multiple versions.
To be of use on a large-scale commercial project, an authoring tool must be
designed to support this kind of work environment. Tools of this sort do
exist in software engineering and content management environments, but
they are not as common in e-learning authoring.

For commercial development there are at least six implications for an
authoring tool environment . First, the authoring tool must allow for task
specialization corresponding to the varying roles of the team. Second, the
tool should allow workflow and resource assignment to be parallel, flexible
and manageable. For example, an authoring tool might allow the user to
define a number of “work stations” or views, for different team members.
Typical work stations might include:

Project Manager
Product Manager or client
Subject Matter Experts
Content Reviewers
Instructional Designers
Instructional design reviewers
Writers
Graphic designers
Graphic artists
Paste-up specialists
Programmers
Software testers
Students/users
Instructors/users
Archivists/librarians

Third, work products should be highly modular, to allow manageable,
defined tasks and flexibility in workflow and resource assignment. Fourth,
work flow must be clearly defined and tracked. In our experience this is
done outside of the authoring tool using configuration management tools,
IRC, Wikis, project documentation and the like. In the ideal authoring tool
there would be features supporting defined handoffs, parallel task structures,
and version control (so everyone is starting with the correct version of the
work product) features supporting dependency checking between work
products (so, for example, the graphic designers for a given module are
assured of working from that module’s storyboards), configuration



256 GARCIA, et al

management, project management reporting, work flow monitoring, task
scheduling and team communication. Fifth, the tool must support quality
assurance processes. There could be features for defining quality standards
for each task, inspection and testing, debugging, defect tracking, work
product promotion and acceptances. Sixth, for products which automate the
first two phases of the development process, task definitions and tool
capabilities should support rapid prototyping, user trials, and iterative
development.

INSTRUCTIONAL MODELS

Given the wide range of e-learning product types (tutorials, intelligent
tutors, various flavors of simulations and games, assessment systems, and
information presentations, any of which may include any level of interaction
and collaboration), it is probably unrealistic to envision tools which support
more than one of them. Even within product types, however, there is a
considerable difference of opinion over how much structure the tool should
impose, and thus, what instructional model (or range of models) should be
embedded in a given tool. For example, as Murray points out in this issue
(see also Murray, 2003, p.518), there is no single definition of what an
instructional simulation is, what the design tradeoffs are for various features
and types of simulations, or what design processes are needed to create
various simulation structures.

Four strategies have been used to automate instructional model creation:
templating, objects, design languages and model-based design. We will
discuss each strategy.

If real design tools are hard to envision, perhaps the most common
automation strategy is to emphasize reusability of code through templates,
which capture particular outputs of specific design decisions. For example,
templates in a tutorial authoring tool will probably be based on assumptions
about how to do explanation, questioning, answer analysis and feedback.
There may be variations of templates for different knowledge types. There
also may be templates with models for varying types of practice and testing.
And, there may be templates embodying models of branching based on a
theory of learning, which may vary by type of knowledge (so that varying
types of declarative and procedural knowledge use different templates, as an
example). There are examples of similar families of templates with
comparable structures for simulation and game authoring, and even for on-



Do WE NEED AUTHORING SYSTEMS? 257

line explanatory text/graphic displays.

Most templating tools reflect some particular design theory. However,
this is a two-edged sword: on the one hand, it is precisely such theories
which allow the template designers to standardize authoring tasks enough to
create the templates. On the other hand, design theories are far from
standard, and design problems and their solutions vary. But building in this
kind of flexibility adds considerable complexity to the templates, and may
diminish their value as a productivity aid. We suspect that the templating
strategy works best when it can be relatively inflexible, by keying it to the
needs of a specific, proprietary product type. The more generalizable the
templating tool is, the more likely that the resulting templates will be too
“generic” or complex to be satisfactory. Perhaps it is more realistic for a
general-purpose authoring tool to provide facilities for creating and
importing templates which reflect the requirements of each author and
shared within a community of practice.

Another approach to reusability is to create libraries of objects. Object-
oriented programming is now familiar, and there has been a great deal of
interest in analogous content creation strategies surrounding “learning
objects.” In our experience, however, learning objects suffer many of the
same limitations as templates: the more capable the object, the greater the
level of complexity and the harder it is to understand, lessening its potential
for reuse. Thus we believe that the greatest potential for learning objects as
an automation strategy may be in proprietary, well-defined and highly
structured contexts — the opposite of the claims for this strategy.

The third instructional model automation strategy is to aim for
generalizability by basing the tool on a design-oriented language. This is the
oldest automation strategy, going back to the original mainframe days of e-
learning. Traditionally, these languages have been intended for maximum
flexibility, but have offered little support for explicit instructional theory.
Examples include PLATO’s mainframe TUTOR language and most of its
descendents. Recently, Gibbons has proposed development of a design
language for instructional simulation (Gibbons, Nelson et al. 1999). This
design language would embody a particular theoretical framework, but
would retain much of the generalizability and flexibility of any language,
making it useful for a wide range of instructional simulation types. As with
the template-based tools, however, the two-edged sword of standardization
applies to languages: the more flexible the language, the wider the range of
uses it can accommodate. However, the very same flexibility adds
complexity, which diminishes the ability of the tool to improve productivity.



258 GARCIA, et al

A fourth automation strategy is to use the concept of patterns and model
based design from the practice of software engineering. Patterns embody the
experience of designers in solving problems which occur frequently. The
authoring tool could provide a library of instructional patterns and
documentation about what problem each pattern is designed to solve. If the
authoring tool contains functions for creating models, it could recommend
patterns by inspecting the model that author is creating. Organizations could
create their own patterns and add them to the pattern library building up a
proprietary repository of best practice design solutions.

Compromises are possible. Perhaps the optimum strategy for automating
instructional models should include some kind of meta-language for custom
template or object development, and the ability to create “production” work
environments based on these custom templates or objects. At PLATO
Learning, proprietary tool development has followed exactly this path: the
foundation classes of objects are built in a general-purpose web authoring
language (Flash), but the language is used to build specialized “editors”
which are used to fill in Flash templates, thus creating particular kinds of
objects defined by the underlying theories of knowledge structures and
instruction as well as a variety of other product type parameters. A given
collection of “editors” trades away generalizability for efficiency, but new
“editors” can be created to meet new needs.

TECHNICAL REQUIREMENTS OF
LARGE-SCALE DEVELOPMENT

Large-scale e-learning development is a special case of large-scale
software development, and any authoring tool needs to provide for, or
accommodate, the requirements of such development environments.
Already described is the importance of systems with defined roles and tasks,
modular deliverables, work flows, and facilities for work flow management
version and quality control of every task.

In addition, the tool should be designed to support a current-generation
software development methodology. Such methodologies emphasize rapid
prototyping, non-linear design, user involvement in design, total quality
management, automated and structured testing, and a staged development
process with a progression of go/nogo decision points for the project.

Should an authoring tool be powerful enough to accomplish all of the above,
it still needs to package the results in a form that can be delivered to users.



Do WE NEED AUTHORING SYSTEMS? 259

Today the expectation is that users will access the e-learning content through a
browser. Content delivered through a browser involves server processing and
workstation processing. Precisely how much work is required of the server and
the workstation is an important matter of the design of the system and will
directly impact the scalability of the product and the diversity of workstation
environments that are supported. This is an area which challenges many
authoring tools. No matter how sophisticated the instructional design and
development capabilities of the tool, it must be able to output assets in a form
which meets the delivery requirements of the product.

In a web environment such as PLATO Learning’s, the “production”
hardware/system platform must be scalable to support many thousands of
simultaneous users using a variety of workstation environments to access
the instruction. Any authoring tool must of necessity be designed for a
particular “target” production platform and target workstation platforms,
and the characteristics and limitations of that platform will play an
important role in determining what the capabilities of the authoring tool will
be. Unfortunately, the things which run most efficiently often represent the
worst instructional design practices.

Finally, the tools must have commercial longevity. Users of the tool must
be assured that the tool will be available, and current, for the full life cycle
of the e-learning products they create. For some users, the product life cycle
is only a few months. For others, it can be a decade or more, with frequent
periodic maintenance and upgrade a major requirement. Over that long a
period, there will likely be platform changes, ranging from new release
levels of browsers and system components, to new hardware platforms,
operating systems and network protocols. The tool and the company behind
it must be capable of supporting the expected rate of change.

CONCLUSION

Compared to general software development, the automation of e-learning
development is in its infancy, even after a generation of experience. The
tools discussed in this issue represent promising examples of some of the
strategies described here. Even though none of the tools represent a
complete solution for all types of commercial e-Learning development, a
number of them are potentially useful for automating certain development
tasks for certain kinds of products. Their ultimate value will depend on their
ability to automate the most labor-intensive parts of development, if only for



260 GARCIA, et al

a particular product type. If they can be adapted to work harmoniously with
a range of other tools aimed at automating other tasks, then significant
productivity gains may result in the form of reduced cost, higher quality, or
improved time to market. Thus we urge the reader to gauge the value of
these tools, not as comprehensive solutions, but as components of
potentially powerful, larger solutions.

REFERENCES

Buschmann, Meunier, Rohnert, Sommerlad, Stal (1996). Pattern-Oriented Software
Architecture: A System of Patterns. Wiley & Sons

Gibbons, A. S., J. S. Nelson, et al. (1999). Model-Centered Analysis Process (MCAP): a pre-
design analysis methodology. White Paper. Logan, UT: 38.

Murray, T. (2003). An Overview of Intelligent Tutoring Authoring System Tools: Updated
Analysis of the State of the Art. In Murray, Ainsworth & Blessing (eds.) Authoring Tools
for Advanced Technological Learning Environments. The Nethelands: Kluwer,
pp. 493-546.



